Location: Home > Papers
  Papers
First Author: Ye T
Abstract:

Marine medaka larvae were exposed to either DEHP (0.1 and 0.5mg/L) or MEHP (0.1 and 0.5mg/L) for 6 months, and the effects on reproduction, sex steroid hormones, liver vitellogenin (VTG), gonad histology and the expression of genes involved in the hypothalamic-pituitary-gonad (HPG) axis were investigated. Exposure to DEHP, but not MEHP, from hatching to adulthood accelerated the start of spawning and decreased the egg production of exposed females. Moreover, exposure to both DEHP and MEHP resulted in a reduction in the fertilization rate of oocytes spawned by untreated females paired with treated males. A significant increase in plasma 17β-estradiol (E2) along with a significant decrease in testosterone (T)/E2 ratios was observed in males, which was accompanied by the upregulation of ldlr, star, cyp17a1, 17βhsd, and cyp19a transcription in the testis. Increased concentrations of T and E2 were observed in females, which was consistent with the upregulation of ldlr. The expression of brain gnrhr2, fshβ, cyp19b and steroid hormone receptor genes also corresponded well with hormonal and reproductive changes. The liver VTG level was significantly increased after DEHP and MEHP exposure in males. DEHP induced histological changes in the testes and ovaries. In addition, the tissue concentrations of MEHP, MEHHP and MEOHP in DEHP-exposed groups were much higher than those in MEHP-exposed groups, and there were no dose- or sex-specific effects. Thus, DEHP exerts more obvious toxic effects compared with MEHP. Taken together, these results indicate that exposure to DEHP and MEHP from hatching to adulthood causes endocrine disruption with sex-specific effects in marine medaka, with males being more sensitive than females.

Contact the author: Dong S
Page Number:
Issue:
Subject:
Impact Factor:
Authors units:
PubYear: 2014
Volume:
Publication Name: Aquat Toxicol
The full text link: 10.1016/j.aquatox.2013.10.025. Epub 2013 Nov 8
ISSN:
Appendix: