Location: Home > Associate Professors
  Associate Professors
XIE Jia-Fang
Highest Education:
1799 Jimei Road, Xiamen
Zip Code:

Education and Appointments:

Jia-Fang Xie received her Doctor degree in Chemistry at University of Science and Technology of China in 2011 and received her PhD degree in Applied Chemistry at University of Science and Technology of China in 2016.



Dr. Xie came to the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences as an assistant Professor. Dr. Xie became an associate Professor in 2019. Dr. Xie joined the Institute of Urban Environment, Chinese Academy of Sciences as an associate Professor in July 2020.

Main academic contributions:
Research Interest:
Environmental electrocatalysis materials and mechanism, waste recycling technology
Selected Publications:

1. Xie, J.; Zhao, X.; Wu, M.; Li, Q.*; Wang, Y.*; Yao, J. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew. Chem. Int. Ed. 2018, 57, 9640-9644.
2. Xie, J.; Wang, X.; Lv, J.; Huang, Y.; Wu, M.; Wang, Y.*; Yao, J. Reversible aqueous Zn-CO2 batteries based on CO2-HCOOH interconversion. Angew. Chem. Int. Ed. 2018, 57, 16996-17001.
3. Xie, J.-F.; Chen, J.-J.; Huang, Y.-X.*; Zhang, X.; Wang, W.-K.; Huang, G.-X.; Yu, H.-Q.* Selective electrochemical CO2 reduction on Cu-Pd heterostructure. Appl. Catal. B: Environ. 2020, 270, 118864.
4. Xie, J.-F.; Huang, Y.-X.; Li, W.-W.; Song, X.-N.; Xiong, L.; Yu, H.-Q.* Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite. Electrochim. Acta 2014, 139, 137-144.
5. Xie, J.; Wang, Y.* Recent Development of CO2 Electrochemistry from Li-CO2 Batteries to Zn-CO2 Batteries. Acc. Chem. Res. 2019, 52, 1721-1729.
6. Xie, J.; Liu, Q.; Huang, Y.; Wu, M.; Wang, Y.* A Porous Zn cathode for Li-CO2 battery generating fuel-gas CO. J. Mater. Chem. A 2018, 6, 13952-13958.
7. Xie, J.; Zhou, Z.*; Wang, Y.* Metal–CO2 Batteries at the Crossroad to Practical Energy Storage and CO2 Recycle. Adv. Funct. Mater. 2020, 30, 1908285.
8. Xie, J.; Ghausi, M. A.; Wang, J.; Wang, X.; Wang, W.; Yang, R.; Wu, M.; Zhang, Q.; Wang, Y.* Low-Energy CO2 Reduction on a Metal-Free Carbon Material. ChemElectroChem 2020, 7, 2145-2150.
9. Wang, X.; Ghausi, M. A.; Yang, R.; Wu, M.; Xie, J.*; Wang, Y.* Photovoltaic-driven solid-state Zn-CO2 electrochemical cell system with sunlight-insusceptible chemical production. J. Mater. Chem. A 2020, 8, 13806-13811.
10. Yang, R.; Peng, Z.; Xie, J.; Huang, Y.; Borse, R. A.; Wang, X.; Wu, M.; Wang, Y.* Reversible Hybrid Aqueous Li-CO2 Batteries with High Energy Density and HCOOH Production. ChemSusChem 2020, 13, 2621-2627.
11. Yang, R.; Xie, J.; Liu, Q.; Huang, Y.; Lv, J.; Ghausi, A.; Wang, X.; Peng, Z.; Wu, M.; Wang, Y.* A trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables dual-model rechargeable Zn-CO2/Zn-O2 batteries. J. Mater. Chem. A 2019, 7, 2575-2580.
12. Xie, J.; Huang, Y.; Wu, M.; Wang, Y. Electrochemical Carbon Dioxide Splitting. ChemElectroChem 2019, 6, 1587-1604.
13. Wang, X.; Xie, J.; Ghausi, M. A.; Lv, J.; Huang, Y.; Wu, M.; Wang, Y.*; Yao, J. Rechargeable Zn-CO2 electrochemical cells mimicking two-step photosynthesis. Adv. Mater. 2019, 31, 1807807.
14. Ghausi, M. A.; Xie, J.; Li, Q.; Wang, X.; Yang, R.; Wu, M.; Wang, Y.*; Dai, L.* CO2 Overall Splitting by Bifunctional Metal-Free Electrocatalyst. Angew. Chem. Int. Ed. 2018, 57, 13135-13139.
15. Lv, J.; Tan, Y.-X.; Xie, J.; Yang, R.; Yu, M.; Sun, S.; Li, M.-D.; Yuan, D.*; Wang, Y.* Direct Solar-to-Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. Angew. Chem. Int. Ed. 2018, 57, 12716-12720.
16. Huang, Y. X.; Xie, J. F.; Zhang, X.; Xiong, L.; Yu, H. Q.* Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities. ACS Appl. Mater. Interfaces 2014, 6, 15795-15801.
17. Huang, Y. X.; Liu, X. W.; Xie, J. F.; Sheng, G. P.; Wang, G. Y.; Zhang, Y. Y.; Xu, A. W.*; Yu, H. Q.* Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chem. Commun. 2011, 47, 5795-5797.

Supported Projects: